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Literature Review

Project Scope Introduction
Video games play an important part in today’s society. The industry is valued at multiple
billions of dollars and has been an important driver of new technological breakthroughs
(Liang, 2022). Apart from their monetary and technological benefits, video games are often
used in education and other areas of our society (Zeng et al., 2020). Just as valuable, if not
more, is the ability of video games to help improve the mental health of the players (Kowal et
al., 2021). Games have also been proven to have a positive impact on users’ well-being,
amongst other benefits (Schaffer and Fang, 2019). As an important part of games is the
entertainment factor, game designers need to focus on creating an enjoyable experience for
players and an important element of this is maintaining a fun yet achievable challenge
(Hergenrather, 2020). In other words, the game designers must ensure the game is not too
difficult or too easy. This can be achieved using several methods. The main method that
most games will use to change the difficulty is to allow the player to select their own difficulty
level at the beginning of each playthrough (Smeddinck et al., 2016). A more customisable
method is to allow the user to select the difficulty level (or make other changes) of individual
components of the game such as in the game Pathfinder: Kingmaker (fandom.com, 2021)
(see Appendix A for examples). Another solution to the difficulty adjustment is implementing
Dynamic Difficulty Adjustment (DDA) that can update the difficulty for each individual player
(Zohaib, 2018). DDA allows the players to jump right into the game without selecting a
difficulty and ensures the game is always adjusting itself to maintain an achievable
challenge. An additional requirement for games is to maintain player focus. This can be
achieved using several methods. One reason players lose focus is because they find the
game too easy or too hard, therefore, games can adjust the difficulty (as seen above) as
needed (Chen and Sun, 2016) to increase focus. Another method of increasing focus is by
switching activities (Westgate, 2019) such as adding puzzle segments to a fighting game.
Just as important is providing the player with enough content of high enough variety. This is
often done programmatically by an algorithm that can procedurally generate content, such
as terrain or platformer levels. This method is called Procedural Content Generation (PCG).
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Importance of Flow State
An important part of every game, and something the developers need to prioritise is for the
player to enter a flow state. Flow state refers to the player’s focus being solely directed at the
game, which often leads the player to obtain a rewarding experience (Soutter and Hitchens,
2016). When a person is in flow state, regardless of the activity they are doing, they often
find difficult tasks far easier and perform at their best (Harris et al., 2017). Therefore, players
in a flow state perform better, and this needs to be considered by any DDA system. But most
importantly to the game designer, people in a flow state achieve effortless enjoyment (Harris
et al., 2021; Harris et al., 2017; Soutter and Hitchens, 2016).
According to a study by Li-Xian Chen on 266 junior high school students (Chen and Sun,
2016), a player's ability to enter a flow state is linked to their boredom levels. Chen found
that when players reported that they felt bored, they would increase the difficulty and were
then more likely to enter a flow state. Similarly, when players were struggling, they would
lower the difficulty, and were also more likely to enter a flow state.

Shoot ‘em ups
While these technologies and techniques are applicable and useful in many game genres,
this project will be demonstrated in a “shoot ‘em up” style game due to its simplicity and,
therefore, ease of prototyping. The game used will also be a newly created in-house game,
specifically designed for this proof of concept. Shoot ‘em ups are an old style of games that
date back to 1962 and involve a main character (often a spaceship) moving upwards while
enemies fly towards the player shooting. The player must dodge the enemy fire, and shoot
back to clear the level or prevent themselves from being overwhelmed. There can also be
boss battles at the end of each level and the levels become increasingly more difficult
(Masem, 2023).

Image 1: Example of “Shoot ‘em ups” (libertygames, 2013)

Image 2: 2nd example of “Shoot ‘em ups” (libertygames, 2013)
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Dynamic Difficulty Adjustment
A major part of this project is locating the player’s optimal difficulty in order to then be able to
detect if the player varies from this difficulty. The simplest approach is to provide the player
with several options to choose from (easy, medium, hard, etc.) (Smeddinck et al., 2016),
however, this may not lead to the best results for several reasons (Zohaib, 2018). For
example, according to a relatively small survey, players may not always choose the difficulty
level that best corresponds to their self-assigned capabilities (Hergenrather, 2020). In order
to detect the optimal difficulty, Dynamic Difficulty Adjustment (DDA) will be used, thereby,
scaling the difficulty of the game based on the player’s ability. DDA dates back to Midway’s
1975 Gun Fight coin-op game, where if a player takes damage it would provide them with an
object to take cover behind (Anaxial, 2023).

Images 3,4: Midway's 1975 Gun Fight (arcadeologia, 2015)

Since its use in Gun Fight, DDA has progressed to become more complicated and, most
importantly, more effective. This can be seen in the following DDA methods:

1. Rubber banding: This technique is commonly used in early racing games. However,
the concept can be applied in other game types. In rubber banding racing games, if a
player is falling behind their opponents the AI opponents will receive a speed
decrease. Similarly, if a player is ahead, the opponents will receive a speed boost.
With the racers generally close to each other, it ensures the player is always focusing
on the game. When in last place, the player is still able to overtake the opponents
and win. On the other hand, when in first place the opponents are never too far
behind (Mi and Gao, 2022; Missura, 2015).

Image 5: Rubber banding AI power/speed multiplier (Mi and Gao).
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2. Similar to the rubber banding method of rewarding the players in last place is
managing the types of bonuses players receive. This is seen in the multiplayer Mario
Kart game where players can pick up mystery power-ups, and unbeknown to them
the game will give weaker rewards to those in the lead and more powerful rewards to
those falling behind (Vang, 2022; Missura, 2015).

3. A different type of DDA is scaling the enemy level based on the player’s level. This
can be seen in games like Bethesda’s Oblivion, where, as the player becomes more
powerful, so do the enemies (Missura, 2015). This allows the player to level up their
character while completing side quests without feeling overly powerful when they
return to the main storyline.

4. These can also become more complicated using Machine Learning techniques, such
as in dynamic scripting. In this method, the enemy AI will be composed of many
different rules, which are chosen from a predefined list during gameplay by a DDA

system. There are many methods of dynamic scripting as well, particularly due to the
fact that it is a continually learning AI. As a continually learning AI, it is possible for it
to always outperform the player given enough time and data. Therefore, different
types of limitations can be imposed by the designer (Sepulveda et al., 2019).

Image 6: Dynamic scripting process during a two player combat game (Sepulveda et
al., 2019)

5. Some newer methods that are more invasive can detect player biosignals and modify
the game based on these. Detections of biosignals to estimate the player’s emotions
has been done before, for example in “Automatic Recognition of Boredom in Video
Games Using Novel Biosignal Moment-Based Features” (Giakoumis et al., 2011), but
a new study that also developed the game Caroline has improved upon these
methods. By setting up a method of feeding the player’s biosignal outputs into a DDA
system, it can increase the difficulty as the player becomes more stressed during the
horror game (Moschovitis and Denisova, 2023). The opposite is also possible, and
likely preferable in other genres, of reducing the difficulty if the player becomes too
stressed. It is likely that this type of biosignal-based games will be seen more often
as smartwatches (and other devices that can detect heartbeats and interact with
WI-FI and Bluetooth) become more common (Ruby, 2023).
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Procedural Content Generation In Games
Procedural Content Generation (PCG) has also been around for several decades in many
forms of constantly increasing complexity and effectiveness. One of the first games to
include procedurally generated terrain was Rogue in 1980 (Yannakakis and Togelius, 2011).

Image 7: Rogue map (Danbloch , 2023)

The definition of PCG can also vary. According to Yannakakis and Togelius in
“Experience-Driven Procedural Content Generation”, PCG is “creation of content
automatically through algorithmic means” (Yannakakis and Togelius, 2011). However, other
studies suggest that PCG should contain “limited or indirect user input” (Shaker et al., 2016)
to be considered as such, where “user” refers to both the designers and player. An
alternative viewpoint is that the content generation does not have to be generated by a
computer, for example Smith argues that several board games have PCG (Smith, 2015).
However, in the examples given in Smith’s paper, the player usually assembles the content
themselves, often using random dice rolls. Given that the player must interact to the extent
of placing tiles or rolling dice, this likely contradicts the aforementioned user interaction
requirement, Therefore, it will be ignored in this paper.

The current definition according to Shakers’ paper which is “the algorithmic creation of game
content with limited or indirect user input” (Shaker et al., 2016) could also be more precise.
The term “indirect” was most likely added to allow for PCG systems based on player’s
actions, which is talked about later in both this paper and Shaker’s paper. However, the
definition would be better adjusted for the purposes of this project as “the algorithmic
creation of game content with limited user input, or when the user does not realise their input
is being used for this purpose”. With the new definition, games can use more user input, for
instance, in the project proposed in this paper where every user action will be directly fed
into the PCG system.
Another example of where user input can be more direct to the PCG system is through
conversations the player has with Non-Playable Characters (NPC). These will be dependent
on NPC conversations becoming more advanced, as mentioned in a 2018 study by Fraser
(Fraser et al., 2018) which will aid in keeping players unaware of their direct input. For
instance, it would be possible for an NPC to ask a player if they enjoyed a certain situation
and the answer could be given to the procedural content generator.

8



Another detail that needs to be included in the definition is that “creation” can refer to
seemingly brand new content. For instance, in the game No Man’s Sky very basic templates
are combined to create “unique” creatures and plants on 18 quintillion “unique” planets and
moons (Tait and Nelson, 2021). Unfortunately, No Man’s Sky was unable to fully deliver
completely unique life forms as player’s have found numerous life forms on different planets
that seem to be nearly identical (Tait and Nelson, 2021; Gravina et al., 2019). Another easier
form of PCG is the combination of larger developer created modules as seen in the
Minecraft game, where the developers use a bottom-up approach to create a map of the
weather (temperature, humidity). They then add the biomes based on the weather, then add
the landscapes and finally add pre-created elements (trees, animals, structures, etc.) that fit
those landscapes in those biomes (Zucconi, 2023). See appendix B for a detailed example.

Image 8: Minecraft terrain creation (Zucconi, 2023).

As with DDA, there are many methods of PCG. These include, but are not limited to:

1. Grammatical Evolution (GE) where Backus-Naur grammar is used to describe the
base syntax (components) of each possible level. A base level is designed, and then
through an evolutionary algorithm it adds new content, based on the grammar. The
system then evaluates the level through a fitness operator and then adds another
section based on output of the fitness operator and the grammar (Shaker et al.,
2016).

Image 9: Backus-Naur form example (Shaker et al., 2016)
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2. Supervised learning can also be used. For example, player movement can be
analysed in Super Mario games and a learning model can create specific levels for
each user (Liu et al., 2020). Another more broad example, also in Mario games, is for
human generated levels to be passed through a model to extract design patterns,
and then create new levels based on these (Liu et al., 2020).

3. Another example of PCG is for speeding up the process of creating large open-world
terrains. For instance, in Skyrim, Horizon Zero Dawn, and Assassin's Creed amongst
others, with large worlds where PCG was used to intelligently place the in-game
elements. This led to the creation of realistic terrains and landscapes with less
developer time needed (Nerevar, 2020).

Image 10: Skyrim terrain (Petitte, 2013)

In this proof of concept project, a simplified Experience Driven PCG system will be used, and
it will only be able to select the order of the stages the game will use. Once implemented, the
PCG system may also be adapted to combine various game elements (enemies, obstacles,
etc.) to create its own stage.

Experience Driven Procedural Content Generation
Experience-Driven PCG (EDPCG) is used when the content generated is based on the
experiences the player has within the game, and their interactions. EDPCG relies on the
system learning how the player interacts with the game, and which parts they struggle with,
or engage with the most, and then generating content mid-gameplay. This is also closely tied
to DDA, as in many games if a player is struggling, the best way to reduce the difficulty is to
modify the map (Shaker et al., 2016). For example, games can reduce the distance the
player needs to jump in a platformer or add additional cover points in a shooter when the
player is struggling.

There are also several ways to generate content based on the player’s experience, many of
which are based on Player Experience Modeling (PEM). PEM data can be obtained through
various methods, such as:

● player interactions with in-game elements,
● real-life player reactions (such as the biosignals method seen above, but also

through body language),
● and the content the player views.
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An example of using PEM is to include the PEM model in the genetic algorithms PCG fitness
operator.

Combining EDPCG, DDA, and Shoot ‘em ups
There is already a large amount of research put into PCG, EDPCG, and DDA. There is also

new research into DDA based on the emotions of the players, for instance, in Caroline

mentioned earlier. However, there appears to be a gap in research for EDPCG based on

players’ emotions, especially boredom. Therefore, a research question of “Can EDPCG

based on DDA outputs be used to increase player focus in shoot ‘em up style games?” has

been chosen.

This project will combine DDA, EDPCG, and “shoot ‘em ups” in an attempt to create a game

that can change the content of a level when a player is bored to cause them to focus again.

The “shoot ‘em up” will have three main components:

1. The classic battles where enemies fly down, and the player dodges their bullets while
returning fire.

2. A race through an asteroid maze.
3. And item collection to score points.

When the game begins, a simple method of DDA will collect information about the player’s
ability based on several factors including:

● time to kill an enemy,
● chances of being hit by an enemy,
● ability to dodge asteroids,
● number of items the player does not manage to pick up.

With the above information, the DDA system will generate a score for the player, and
customise the difficulty based on this score. The difficulty can be customised by changing
the asteroid density, or enemy and item numbers amongst other game elements.

With the game set to an optimal difficulty, the EDPCG system will initiate and receive data
from the DDA system. If the player’s performance drops again, the system will assume the
player has become bored due to the lack of stimuli. This is based on a combination of
Li-Xian Chen’s study proving that focus drops when players become bored (Chen and Sun,
2016) and Westgate’s paper which states that switching activities can reduce boredom
(Westgate, 2019). As the system assumes the player needs new stimuli, it will switch the
gameplay mode for a certain amount of time.

In the early stages of the EDPCG system, it will split the game into individual stages
dedicated to one type of gameplay (classic battles, maze, collecting). However, it may
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become more complex and combine these elements using percentages to indicate how
much of each element to include.

Software to Develop
The project will be split into several pieces of software. These will run simultaneously and
communicate through websockets or JSON files in a shared folder.
The game will be built in the Godot game engine using GDScript as a language. Initially,
Unity was considered, however, as Godot has a simpler language and environment, it makes
it a better candidate for fast prototyping of games (Technologies, 2023). Godot also has a
dedicated 2D engine which can give it a slight edge (gamedevbeginner, 2022). For example,
Godot can handle more 2D objects at certain FPSs (Mean Gene Hacks, 2021).

The DDA and EDPCG systems will likely be coded in GDScript inside the Godot engine, or
run externally and written in Ruby. The reasons to not include them in Godot are a) reduce
load on Godot resources, b) clearly separate the features.

A third system will also be used for demonstration purposes. This system will be a Ruby on
Rails web page hosted locally and constantly updating a display of graphs and statistics to
clearly show the intent of the DDA and PCG systems.

Future Benefits
This project will terminate once the proof of concept is complete. However, this system could
become more complex and be included in larger games, thus benefiting the industry. An
example of a game that could benefit from this is Uncharted as the Uncharted series often
switches between puzzles, dialogue, cut scenes, combat, and climbing (Onorem, 2023).

Another sector to which this type of game could benefit is education. Many countries are
attempting to create more student personalised education, which can be done through
games or computer activities (Zhang et al., 2020). In such a field, a system to detect when
students’ attention levels are low, and which activities would reignite their attention will be
very valuable.

These methods could also help with people who use games to improve their mental health
(Kowal et al., 2021), by adapting the game to each player’s needs.
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Project Scope Conclusion
In conclusion there are many aspects to the gaming industry. This report has focused on

Dynamic Difficulty Adjustments and Procedural Content Generation, which are both very

large and complex parts of the industry with many variations. DDA and PCG have each

existed for decades in various forms, and are both consistently becoming more common in

the industry. DDA is commonly based on the user's experiences, and while the methods

become more complex, the focus of adjusting the difficulty to allow the player to enjoy the

game remains consistent. PCG on the other hand has many reasons to be implemented.

The main benefit in the past of PCG was to allow the developers to populate a large world

with less effort, however, it can also be used to assist in DDA systems, designing maps for

individual players, as well as various other aspects of games.

While DDA output has in the past affected PCG systems, the purpose has been to adjust the

difficulty of the game. This paper has suggested a new purpose of passing DDA output into

PCG systems which can potentially increase player focus, which can lead to more

enjoyment of the game.

13



Requirements Analysis

Functional Requirements
● Must include a playable “shoot ‘em up” including 3 modes of gameplay (asteroid

maze, battling, collecting).
● Must analyse player ability and determine a score to be used in DDA and PCG.
● Must change difficulty based on player ability in the first section of the game.
● Must decide next sections of gameplay based on player ability variation.
● Should display some form of statistics in a second display.
● Should change difficulty based on player ability during the entire gameplay.
● Should keep track of which stages the player stayed focused on the longest.
● Could combine gameplay modes to create its own stages.
● Could include more than 3 game modes.
● Won’t allow the player to input a difficulty setting.
● Won’t need an internet connection.

Non-Functional Requirements
● Run on a Dell 5 5590 laptop.

● Run on Godot.

● Run on a ruby on rails application (rails: V7, ruby: V3).

● Game must be played for at least 6 minutes.

● Game must receive better evaluations from players when the DDA and PCG

systems are enabled.
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Design / Methodology
The game will consist of one wave of objects (enemies, asteroids, collectables) followed

by a collection of health boosts on repeat until the game ends either due to the player's

health reaching 0 or the player ends/restarts the game. Each wave will spawn objects,

with the type of objects depending on the game mode chosen and the quantity and

frequency depending on the player's ability score for the current object type. Please

view https://youtu.be/z6pE6eM7EoA to watch a full video of the game.

In order to allow more adaptability and improve the development process, all elements

were split into their own components. These components fall under three categories:

Web, Game, and Random-code. Random-code is for stand-alone scripts to perform

tasks such as populating JSON files that are needed at game start, for example a list of

possible spawn times that would be too CPU intensive to perform during gameplay.

Web and Game have also been split into smaller chunks. In the Game code, each

element has its own scene (.tscn, i.e. files that are used to control graphics and

connections between base elements) and script (.gd i.e. code) files. Similarly, the Web

system has been split into individual models, controllers and one view (MVC

(Codecademy)). The web system developed in Ruby on Rails also has database and

configuration files following the Rails structure.
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Images 11, 12: Screenshots of folder structure (Rails left, Godot right)

The most important aspect of the project is the game itself. This has been coded in

Godot for the reasons mentioned in Software To Develop. In addition to the game

components and logic, the Experience Driven Procedural Content Generation (EDPCG)

and Dynamic Difficulty Adjustment (DDA) systems have also been implemented in

Godot in order to allow for more cross-platform compatibility. As all the key

components are in Godot, the game as a whole can be exported to any platform that

Godot supports, which currently are Android, IOS, Linux, Mac, Windows, and Web. For

this project the main export version will be Web.

The scope of the web section allowed for many options of languages and frameworks.

Rails was chosen due to personal past experience as well as its fast prototyping abilities

(Górniak, 2023). The layout of the Rails application allows for one view file that displays

a simple dashboard containing a table with upcoming objects (enemies, asteroids,

collectables), and a graph depicting the players ability points over the previous waves

among other information that is interesting during development and presentation, but
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is not needed during gameplay. As with the backend of the website, the frontend could

be developed in many ways. Due to the frontend being intended to be very simple, basic

HTML, CSS, and JavaScript were chosen as the implementation methods. The Rails

generates HTML through .erb templating files, thus pre-populating them with player

information. Erb files suffice for the majority of the data displayed, however Highcharts

(Highcharts) was added to simplify the graph’s generation.

Image 13: Frontend graphs

As previously mentioned, the gameplay consists of three game types: Enemy, Asteroid,

Collectables. These three plus health packs can be generated and added to the game

through the EDPCG system. In addition, their variables such as speed, can be defined

through the DDA system allowing them to adapt to the player's abilities. The player

interacts with the above elements by controlling a small ship at the bottom of the

screen with limited capabilities. This ship can be controlled using WASD or arrow keys to

move, and the spacebar to shoot. The player's movement is restricted by the sides of

the screen, the bottom, and a border 450 pixels (arbitrary) above the bottom of the

screen to prevent the player from moving too high up. The player also has health that is

displayed at the top of the screen in a green health bar.
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Image 14: The game with enemies and health bar

The DDA file (dynamic_difficulty_adjustment.gd) stores the player’s ability for each

game type, and the history of these variables. It also stores the bullet, asteroid, enemy,

and collectable vertical speeds and the enemy's horizontal speed and shooting delay.

Each time the player takes damage from one of these objects, or completes a round, the

above variables will be updated. For example, if the player enemy ability changes, the

following code will run setting the bullet and enemy variables:

func _player_enemy_ability_change():

bullet_speed = max(player_abilities_dict['enemy'], 45)

enemy_speed_sideways = sqrt(player_abilities_dict['enemy'] * 6) * 3

enemy_speed_down = max(player_abilities_dict['enemy'] / 3, 50)

enemy_shooting_rate = 500.0 / player_abilities_dict['enemy']

Code extract 1: player_enemy_ability_change function

The above code will be executed for two possible reasons: in the first situation the code

is executed immediately after the player takes damage, and their abilities are adjusted.

The second situation in which the code is executed is after the wave is complete and the

player receives 80 additional ability points in the category they just played.
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The points that the player loses after being hit also adjusts if the player is hit multiple

times during the same wave as depicted by the following code:

func _on_player_player_hit_by(object):

if object.is_in_group('bullet'):

decrease_player_ability(

60 / max(times_points_were_lost_during_wave, 1), 'enemy'

)

times_points_were_lost_during_wave += 1

# this is after so the first two are 60

_player_enemy_ability_change()

elif object.is_in_group('asteroid'):

decrease_player_ability(

60 / max(times_points_were_lost_during_wave, 1), 'asteroid'

)

times_points_were_lost_during_wave += 1

# this is after so the first two are 60

_player_asteroid_ability_change()

Code extract 2: on_player_player_hit_by function

If the player is hit once, they will lose 60, twice will cause 60 + 60, three times will result

in 60 + 60 + 30 and so on. This way the ability will not drop too drastically if the DDA sets

the difficulty too high, allowing the ability to gradually self-adjust.

The EDPCG (decide_next_wave.gd) file is called at the beginning of each wave, and

returns an array populated with the game elements to add. Its first role is to define the

game type (the type of objects to spawn). In the next step it will add the elements to the

wave, in a similar method for all 3 game types. For example, with asteroids it will

function as below:

func add_asteroids_to_wave(percentage):

var asteroid_list = []

var points = dda.player_abilities_dict['asteroid'] / percentage

var time_delays = null

var number_of_asteroids

var points_to_make_up

var seconds_to_make_up

while time_delays == null:

number_of_asteroids = number_of_objects(
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points, cost_of_asteroid, 1.3

)

points_to_make_up = points_to_make_up(

number_of_asteroids,

cost_of_asteroid,

points)

seconds_to_make_up = points_to_make_up / 15

time_delays=delay_option(seconds_to_make_up,number_of_asteroids)

var positions_in_x = positions_on_x(time_delays, 20)

for i in range(number_of_asteroids):

asteroid_list.append(

{

"scene": astroid_scene,

"position":Vector2(positions_in_x.pop_front(),0),

"time_s": time_delays.pop_front(),

"class": 'asteroid'

}

)

return asteroid_list

Code extract 3: add_asteroids_to_wave function

Executing the above code will return an array populated with dictionaries. Each

dictionary will have the scene needed to spawn, the x and y positions, the number of

seconds between this object and the previous object, as well as its class. Similar code

will run for each game type if multiple are included in the wave (depending on the game

mode chosen by the player) and all arrays will be merged and returned to the

main_world to handle spawning (a mode with multiple types of objects does not exist

yet, but would be easy to create due to the implementation of these components).

Communication between the game and the website is handled via HTTP post requests

and is one sided (only the game communicates with the web). When the game starts, or

it updates the player's abilities, or when a new wave is started, it will contact the

relevant controller on the Rails app. The HTTP elements are handled by the http.tscn

and http.gd files, which can be called from various game resources. Within the game,

communication is often performed using method calls. However, in some situations

such as when multiple functionalities are executed based on one trigger, signals are

used.
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Implementation
The project started as a blank world with a placeholder image of the Godot logo as the

player’s spaceship. The first task was to allow the player to move the spaceship within

the allowed borders. Once this was complete the ability to shoot was added. When the

player’s spaceship was complete, simple template enemies were created using the

player’s script as a default with a few significant changes. Directions were flipped and

the movement was automated to allow the enemies to move down and sideways at a

fixed speed.

Image 15: Game when enemies were first added.

These speeds will later be updated to account for the player's ability, and will be

assigned to the enemy at the spawn time. Without the spawning system the enemies

were manually placed slightly above the screen. However, in the final version a more

sophisticated method would be needed. So the spawning system was created.

decide_next_wave.gd is designed to return an array with various information about the

wave. Initially decide_next_wave would return a manually written array with the ‘scene’,

‘position’, ‘time_s’ (delay between the previous spawn), and ‘class’. The main world class

was updated to be able to handle the decide_next_wave response and create the

instances as instructed, including changing the object type depending on the ‘‘scene’’
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passed. With the main world able to create the instances, decide_next_wave was fleshed

out to be able to always return a random array of enemies depending on the player's

ability (currently static at 100). decide_next_wave was using functions that could later be

adapted to work with other classes too. These functions include methods to define the x

coordinates and the delay times and functionality to calculate the number of enemies

(or objects) as seen below:

func positions_on_x(time_delays, size, max_distance=10000):

var positions_in_x = []

var positions_used_in_second = []

for delay in time_delays:

if delay > 0:

positions_used_in_second = []

var x_pos = random_position_on_width()

var last_x = positions_in_x.back()

while invalid_x_pos(positions_used_in_second, x_pos, size,

max_distance, last_x, delay):

x_pos = random_position_on_width()

positions_in_x.append(x_pos)

positions_used_in_second.append(x_pos)

return positions_in_x

Code extract 4: positions_on_x function

func delay_option(seconds_to_make_up, number_of_objects):

if !possible_wait_combinations.keys().has(str([seconds_to_make_up,

number_of_objects])):

return null

var time_delay_options = possible_wait_combinations[

str([seconds_to_make_up, number_of_objects])

]

return [0] + time_delay_options[randi() % time_delay_options.size()]

Code extract 5: delay_option function

func number_of_objects(points, cost_of_object, count_multiplier=1.5):

var min_number_of_objects = points / cost_of_object

var max_number_of_objects = min_number_of_objects * count_multiplier

var max_objects = 100 # from json (all_wait_combinations.json)

return min(random.randi_range(min_number_of_objects,

max_number_of_objects), max_objects)

Code extract 6: number_of_objects function
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The delay times in decide_next_wave are calculated based on the number of objects to

spawn. “min_number_of_objects” would define the minimum number to spawn as the

player's ability in the current game mode divided by the cost of the object. And the

maximum number of objects as the minimum multiplied by two (this would later be

updated as 1.5 or a custom value passed in). The number of objects will then be a

random number within the two. This would then allow for more objects to be spawned

than the player's ability suggests resulting in the current points remaining being

negative, however, increased delay times compensate for the extra enemies.

decide_next_wave would add one second delay to a random object per x ability points

needed to reach 0. The allocation of the seconds was done by generating all possible

arrays of integers (seconds) with length equal to the number of objects minus one, and

with the sum of integers equal to the seconds to make up. The above method, however,

would cause lag as the length of the array increased. A pre-built json was then used. In a

Ruby script, all possible arrays under length x (number of objects-1) with sum y (seconds

to make up) were created and stored in 'all_wait_combinations.json' to be used during

gameplay.

require 'parallel'

require 'json'

# thanks chatgpt

def generate_combinations_with_length(seconds_to_make_up,

num_of_objects, current_combination, result)

if seconds_to_make_up.zero? && num_of_objects.positive?

num_of_objects.times { current_combination.append(3) }

num_of_objects = 0

end

return result.append(current_combination) if seconds_to_make_up.zero?

&& num_of_objects.zero?

return if seconds_to_make_up <= 0 || num_of_objects <= 0

numbers = (0..[3, seconds_to_make_up].min).to_a

numbers = numbers.shuffle
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while numbers.any? && result.count < 2

num = numbers.pop

generate_combinations_with_length(seconds_to_make_up - num,

num_of_objects - 1, current_combination + [num], result)

end

end

def find_combinations_with_length(seconds_to_make_up, num_of_objects)

result = []

generate_combinations_with_length(seconds_to_make_up, num_of_objects,

[], result)

result

end

all_combinations = JSON.parse(File.read('all_wait_combinations.json'))

Parallel.map((0..40).to_a, in_threads: 22) do |seconds_to_make_up|

100.times do |num_of_objects|

num_of_objects += 1 # dont do 0

next if all_combinations[[seconds_to_make_up,

num_of_objects].to_s]

puts "x: #{seconds_to_make_up}, y: #{num_of_objects}"

all_combinations[[seconds_to_make_up, num_of_objects]] =

find_combinations_with_length(seconds_to_make_up, num_of_objects)

end

end

File.open('all_wait_combinations.json', 'w') do |f|

f.write(all_combinations.to_json)

end

Code extract 7: Code to populate 'all_wait_combinations.json'

However, as x and y increased during testing, the json file became too large, passing

160MB. Initially, the enemy difficulty (speed, and bullet shooting speed) was increased

to reduce the chances of x and y becoming too large, but this attempt proved futile. In

the final attempt the number of possible arrays was defined to only generate a few

possibilities for each x and y combination, and this number decreased (manually

adjusting the file) as x and y increased, meaning more likely combinations had more

possibilities.
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{"[0, 1]":[[3]],"[0, 2]":[[3,3]],

"[8, 18]":[[3,2,2,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3]],

"[8,21]":[[2,3,2,0,1,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3],[2,3,2,0,0,0,0,0,0

,1,3,3,3,3,3,3,3,3,3,3,3],[2,3,2,0,0,0,0,0,0,0,0,0,1,3,3,3,3,3,3,3,3]]}

Code extract 8: Example outputs from ‘'all_wait_combinations.json'

In the first example above `"[0, 1]":[[3]]` 0 refers to 0 seconds needed to increase the

ability points to 0, and 1 object to spawn. Therefore, an array of length 1 with the value

of 3 (no reduced wait time) was created.

With a basic game set up, the website to track waves and abilities during development

was created. This website consists of a Rails project run on a docker container and

connected to a sqlite database to store the abilities history and the current wave data.

create_table "player_abilities", force: :cascade do |t|

t.integer "wave_id"

t.float "enemy_ability"

t.datetime "created_at", null: false

t.datetime "updated_at", null: false

t.float "asteroid_ability"

t.float "collectable_ability"

t.index ["wave_id"], name: "index_player_abilities_on_wave_id"

end

create_table "wave_components", force: :cascade do |t|

t.integer "wave_id"

t.string "class_name"

t.datetime "spawn_time"

t.integer "spawn_after_seconds"

t.datetime "created_at", null: false

t.datetime "updated_at", null: false

t.index ["wave_id"], name: "index_wave_components_on_wave_id"

end

create_table "waves", force: :cascade do |t|

t.integer "wave_number"

t.datetime "created_at", null: false

t.datetime "updated_at", null: false

end

Code extract 9: Website schema
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As the game processes, HTTP requests are sent to the Rails API endpoints with json

data, that the server will store and display to the developer. This data consists of the

objects that will be spawned on the current wave, which is sent at the start of each

wave. As well as the player's abilities that will be sent each time they change. Initially,

webhooks were considered for the connection between the game and the Rails

application, however, basic HTTP proved easier to implement in Godot than originally

expected. The website then displays the two datasets to the developer on the

dashboard page. The wave information is a simple table that will state the object being

spawned and the delay in seconds between the object and the previous one. Each row

in the wave table will become green as the object is spawned and if the table grows too

large, it will be split into smaller tables along the same horizontal axis.

Image 16: Multiple tables of objects to spawn in current wave

The more interesting player ability data is displayed in a graph composed of three

points: enemy, asteroid, and collectable abilities per wave. This graph allows the

developer to monitor their ability during the game, and therefore, ensure that the game

is accurately editing its behaviour to accommodate the player’s ability change.
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Images 17, 18: enemies to spawn with 1000 ability (left) and 100 ability (right)

100 ability 1000 ability

bullet_speed 100 1000

enemy_speed_sideways 73 232

enemy_speed_down 50 333

enemy_shooting_rate 5 0.5

Table 1: enemy variables with 100 and 1000 ability

Player health was implemented as well. The player has five health points, with each hit

from an asteroid or bullet costing one, as well as each missed collectable. The player

can view their health at the top of the screen during gameplay, and is given an

opportunity to add to their health after each wave. After each wave many health packs

are dropped in a similar manner as collectables. These are very easy to collect and

provide the player with an easy method of filling their health bar while resting after the

wave. Enemies also have 3 health which is conveyed to the player by the damage on the

enemy ship's sprite.
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Image 19: health packs

Asteroid and collectable functionality was implemented in similar ways. Both would

“fall” downwards at certain speeds and as all other objects, they are deleted if they

passed the screen limits. If the player misses a collectable they will lose health and the

asteroids will cause damage to the player if they hit the player’s ship.

Images 20, 21, 22: Final versions of Collectible, Enemy, Asteroid (left to right)

An important element to the DDA system was adjusting each object to the player's

ability. The adjusted characteristic which is set at spawn time for all objects (including

bullets) is downwards speed, with each object using a different calculation. Enemies

have more data which is dependent on the DDA system, these are: sideways speed, and

the interval in seconds between shots.

Once all scenes were mostly implemented, with only fine-tuning requirements left, the

images were updated. The images were downloaded from open source sites (licences

included in the repository). An effort was made to get images from the same artist in

order to have a consistent style. However, some images were obtained from other

sources.
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Images 23, 24, 25, 26, 28: Collectable, Enemy, Asteroid, Health, Ship images (left to right)

Throughout the development the evaluation algorithms were adjusted to allow for more

accurate DDA data. The original idea during the Project Scope was to evaluate players

on many data points, including how close they are to asteroids, and how many enemy

ships they destroy, and how close the collectables were to the bottom of the screen

before being collected. However, these approaches were deemed unfit as without

implementing a clear incentive to avoid these situations some players might try to

increase the difficulty by giving themselves extra challenges. The challenges some

players might add could resemble “Can I pass without shooting?”, “Can I pass through

that small gap?”, “Can I collect collectables at the last second?” and players attempting

those would be providing inaccurate data to the DDA system. Therefore, the DDA

system must only use the data that is guaranteed to depict a skilled or unskilled player.

The most accurate data is “if a player takes damage” => “they are performing badly”,

thus, this was used. In order to increase the player’s abilities similar methods were

considered, however, they could all have the same flaws. Therefore, to accurately

update the players abilities, a simple method was chosen. After each wave the player's

abilities will increase by a standard amount. Therefore, if the player does not get hit,

their ability will increase after the wave. If, however, the player gets hit once, their ability

score will decrease due to the damage but will also increase due to the end of the wave

which has a greater value, so the ability will still trend upwards, but at a lower rate. The

third option of the player taking damage multiple times in one wave will result in the

ability decreasing more than the end of wave increase, thus the ability will trend down.

In the final version, 6 game modes exist: 3 are intended for development, 2 for testing,

and one as the final game. The three for development allow the developer to only

include one game type (enemy, asteroid, collectable), and thus enables an easy method

of testing individual components. The two game modes for testing are ordered_switch

(Mode 1) and random_switch (Mode 3), which will change the game type in a consistent

order after each wave, and change the game type randomly (sometimes choosing the
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current mode again) after each wave respectively. These two game modes are referred

to as “mode 1” and “mode 3” in the questionnaire. The final mode “mode 2” is the main

game which will dynamically adjust the game type depending on the player's ability.
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Testing & Results
The game is not the main goal of this project: the main goal is the adaptive content

designed to increase engagement within the game. Therefore, the testing must focus on

how people perceive the entertainment value of the game with different features

enabled. In order to allow testers to review the game and the DDA/EDPCG combination

the game is deployed on an AWS, EC2, Ubuntu, Node server available at

kaveh-nejad.com, as well as a Google form for participants to fill in (please see Appendix

C for all questions).

Alpha Testing
During development most features were tested and fine-tuned as they were

implemented. However, once all features were complete, the game was tested and

many features were adjusted. These features include the default player abilities which

increased from 250 to 500 to allow the game to more quickly adjust to the player's

levels which is often greater than 250. The maximum quantity of the spawnable objects

was decreased to allow for more condensed and quicker waves in order to reduce the

time testers would need to play the different modes.

Another issue that was encountered towards the end of the development was the lag

when hosted as a web page. This lag and stutter would be introduced because of the

browser computing limitations as all the game data is sent to the client through a .wasm

file. As the game was designed with game efficiency in mind there were not many parts

that stood out for refactoring. The first update attempted was multiplying all speeds by

delta (“the amount of time that has passed since the last frame was drawn” (Dragonfly)).

Furthermore, the debugging code was removed, such as the HTTP requests being sent

out to the Rails application. In addition to removal of debug features, the most impactful

change was setting the maximum frames per second (FPS) to 40 which almost

completely removed the jitter. Adding a maximum FPS lower than the smallest expected

value had the added benefit of making the game's speed more consistent.
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Beta Testing
Participants and Methodology

In the first set of beta testing, a copy of the game as well as the questionnaire was given

to an initial tester, in which she was able to suggest clarifications on the questionnaire

and through monitoring her gameplay a final bug in the PCG system also was caught.

The participants received a questionnaire with sixteen questions. The first two

questions are intended to provide information about the tester for future comparisons.

This information consists of their age in roughly five year ranges, and how frequently

they play video games.

The second to last question is “Any additional comments overall?” as an open-ended

question to allow the user to inform the developer of any thoughts they had.

The final question is a text box for the players to input their game data that they can

copy past from the main screen. This data is in the form of `[{"abilities":{"asteroid":[...],

"collectable":[...],"enemy":[...]},"game_mode":"Mode 1"}]` and will enable the creation of

graphs once submitted (see Appendix D for all graphs).

The participants in the questionnaire are from multiple backgrounds, various ages and

ranging knowledge of game development and technical experience. However, these

questions were not included in an attempt to simplify the questionnaire. An additional

point is that some of the participants have already had the concept of this project

explained to them in the past.

Of the eight participants, four were aged 21-25 while the remainder was split evenly

between 26-30 and 51+. The question “How often do you play video games?” had 25

percent responding “multiple times per month” while “less than once per month” and

“multiple times per week” received 37.5% (3).

32



Questionnaire Results

As seen in the results below, the majority of people believe they paid more attention

during mode 2 and 3 (random and main) (there are potential issues with this section,

please see Evaluation for more details). This suggests that most players lost interest

with an ordered switch.
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Images 29, 30, 31: Charts depicting concentration and focus values per game mode.

From the Google forms survey.

Similar results can be seen with the overall entertainment value of the game:
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Images 32, 33, 34: Charts depicting entertainment values per game mode. From the

Google forms survey.

Most people were also unable to determine how the game decides which game types to

spawn (please see Evaluation for possible issues). In game mode 1 (ordered), three

people predicted that it was ordered, one assumed random, and four were not sure. In

mode 2 (main), one person answered dynamically, three assumed randomly, two did

not know, and one realised that it is adapting to become easier as they made mistakes

but did not understand how the waves were decided, and one assumed it was

predefined to get harder each wave. As for game mode 3 (random), two predicted

random, one dynamically, one assumed the difficulty is based on the performance in

the previous round, one assumed it was based on the position of the player (they were

possibly mentioning the collectables which are designed to spawn close to each other

and therefore, likely around the players ship), and one assumed the difficulty was

adjusted based on the previous mode.

Using the DDA ability scores, charts were generated depicting the player’s abilities over

each wave (see Appendix D). In these charts, most players’ abilities increased as they

played with few decreases. Regardless of if the abilities increased or decreased to adjust

to the player, they appear to stabilise at a score where the player is consistent. The

longer a player played the more stable their abilities. This demonstrates that the DDA

system can adjust to each player given enough data (see appendix C and D for full

results)
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Evaluation
Questionnaire Results
The results of the questionnaire did not reflect the intended outcomes of the project.

The DDA abilities score graphs do depict that the abilities often adjust until they reach a

stable position, and some testers did notice an adjustment of the difficulty. However,

the questionnaire was not able to see an increase in the attention or enjoyment due to

the EDPCG system as the scores of the random mode were equal to the main mode.

This may indicate that longer testing times are necessary or that the EDPCG system

needs more fine-tuning.

Dynamic Difficulty Adaptation
The main issue encountered while developing was implementing the DDA system.

Unfortunately, the majority of articles/papers found online were either too vague,

depicting DDA fundamentals without describing how to implement them, or too narrow

focusing on games that are vastly different from shoot em ups. Other methods would

have likely produced better results. An interesting method of implementing DDA to

explore would have been Bayesian-based player models, in which a model of the player

is created, and therefore the game is able to predict rather than retroactively adjust

(Gonzalez-Duque et al., 2021).

Experience Driven Procedural Content Generation
The EDPCG system also requires further optimisation. The spawning of objects is not

implemented in a method where a skilled player can realistically collect every item in

bad situations. This was mentioned multiple times in the questionnaire. More focus

could also be required on spawning times to reduce boredom.

Questionnaire
The questionnaire was also flawed. Ideally, it would have included more sections, with

more game modes that are able to collect players’ opinions on the DDA systems rather

than just focusing on the EDPCG system. However, the extra sections would have

increased the time needed to fill in the questionnaire and therefore make it unlikely

that people would be able to complete it. It also appears that the DDA system was not
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accurate enough in the first few waves. Given more time, a better system would have

people test the game and fill in a questionnaire solely on the enjoyment of the game

types (asteroid, enemy, collectable). This questionnaire would be followed by more

development to improve the enjoyment value of the game types. With the

recommendations implemented on the game types, a second questionnaire would

collect data on the DDA system. More development would follow to improve the DDA

system based on the answers to allow for a more accurate evaluation of the EDPCG

system in a third and final questionnaire. A final issue with the questionnaire is the

consistent ordering of the game modes. As seen in Testing & Results, the majority of

players preferred game modes 2 and 3 over game mode 1. This could indicate that the

players do prefer those modes, or it could indicate that players prefer the later modes

due to already becoming familiar with the game or a number of other factors. The

opposite could have also been possible, but was not seen in this questionnaire.

Development Environment
Many tools were used in the creation of this project. The most important tool was

Godot. Godot proved very useful due to its easy-to-use 2D interface, methods of

connecting objects, and choice of scripting language. However, it also provided

challenges due to the performance loss of the high-level language when running on a

web platform and an additional difficulty was the integrated IDE which does not have

many of the features expected in modern IDEs. Additionally, Ruby on Rails performed

exactly as expected making the development of the dashboard web page easy to

implement.

Self-Reflection
Personally, I am also happy with the overall outcome, while the DDA and EDPCG

systems are not as accurate as I had hoped for, I do see potential in the overall idea and

I hope to see it fully implemented in a more advanced game one day. I have also

learned more about gamedev than I had expected, such as new ways of optimising the

game processes and techniques of structuring the game logic. Most importantly the

value of proper game testers to evaluate the individual components was made clear,

and I will make more of an effort in the future.
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Conclusions & Future Work
This project was an initial attempt at developing a game that can adapt the content to

the player’s interest based on the data collected by the Dynamic Difficulty Adjustment

(DDA) system. Various other projects could be attempted including more sophisticated

DDA and Procedural Content Generation (PCG) systems thus allowing for more accurate

results to be collected. As mentioned in the Evaluation section, more emphasis should

be placed on the DDA systems in future adaptations to ensure the final results reflect

on the PCG system rather than the DDA system or other game components. Other

game types could also be implemented. In this approach, the three game types

appeared to be too similar. Future work would benefit from investigating other possible

game types that allow for more distinct gameplay, thus emphasising the change created

by the PCG system.

Projects tailor-made to other fields would likely also provide interesting insights into the

feasibility of this combination of systems. An interesting example would be in education

where the students receive scores based on their abilities in distinct fields. Over the

course of hours, days, or weeks the systems adapt the teaching curriculum or subject

types in an attempt to increase the learning rate of the students. Or, alternatively, the

system could detect the optimal times for students to take breaks, by detecting when

the students’ attention drops before the students become bored of the task. The system

to enable optimal breaks would reduce the chance of students not wanting to return to

a subject because their last experiences ended badly (CLEAR, 2018). Of course, these

systems would work best for individual students learning by themselves. However, an

average could be used for an entire class. Similar implementations for detecting optimal

times to stop performing a task could also help individuals in therapy with other tasks if

proven successful.
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Appendix A

Complex difficulty settings and other game options that can assist in difficulty selection.

Image A1: The last of us two - various difficulty settings (Tran, 2020)

Image A2: More last of us two game options (Bill, 2022)
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Image A3: Spider-Man 2 Web assist slider and fall damage settings (Cichacki, 2023)

Image A4: Pathfinder: Kingmaker difficulty settings (Mastazajeb, 2018)
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Appendix B
Minecraft map generation:

Image B1: Minecraft map generation flow (Zucconi, 2023)
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Appendix C
Questionnaire results:

Image C1: Age and video game habit of testers
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Image C2: Focus and entertainment scores of game mode 1
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Image C3: How the algorithm works and additional comments for game mode 1
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Image C4: Focus and entertainment scores of game mode 2
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Image C5: How the algorithm works and additional comments for game mode 2
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Image C6: Focus and entertainment scores of game mode 3
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Image C7: How the algorithm works and additional comments for game mode 3
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Image C8: Any additional comments overall
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Appendix D
Player abilities per wave and game type:

Blue: enemy ability

Purple: asteroid ability

Green: collectable ability

Mode 1: ordered switch

Mode 2: main

Mode 3: random switch
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Images D1-D6: Testers' ability per wave per game mode
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Appendix E
Links
Gitlab (Code):

https://gitlab.com/Kaveh_N_Nejad/uni-honours-cm4105

Game Example (Youtube):
https://youtu.be/z6pE6eM7EoA

Game:
kaveh-nejad.com
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